Home
Class 11
MATHS
If (sin^4x)/2+(cos^4x)/3=1/5t h e n ta...

If `(sin^4x)/2+(cos^4x)/3=1/5t h e n` `tan^2x=2/3` (b) `(sin^8x)/8+(cos^8x)/(27)=1/(125)` `tan^2x=1/3` (d) `(sin^8x)/8+(cos^8x)/(27)=2/(125)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^ (8) x-cos ^ (8) x = 1

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

(sin x) / (sin3x) + (sin3x) / (cos9x) + (sin9x) / (cos27x) = (tan27x-tan x) / (2)

Show that: (sin x)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=(1)/(2)(tan27x-tan x)

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)x cos^(2)x)

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=a sin2x+C then a=

Prove that: (sin x)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=((1)/(2))(tan27x-tan x)

8cos x cos2x cos4x = (sin6x) / (sin x)