Home
Class 14
MATHS
(64/125)^(-2/3)+(256/625)^(-1/4)+(3/7)^0...

`(64/125)^(-2/3)+(256/625)^(-1/4)+(3/7)^0=`

Answer

Step by step text solution for (64/125)^(-2/3)+(256/625)^(-1/4)+(3/7)^0= by MATHS experts to help you in doubts & scoring excellent marks in Class 14 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that: ((64)/(125))^(-2/3)+1/(((256)/(625))^(1/4))+\ ((sqrt(25))/(root(3)64))=(65)/(16)

Simplify sqrt(25)/(64)^(1/3)+(256/625)^(-1/4)+1/(64/125)^(2/3)

Knowledge Check

  • Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))^(-2//3)+(1)/(((256)/(625))^(1//4))+((sqrt(25))/(root(3)(64)))) .

    A
    `15//13`
    B
    `0`
    C
    `16//5`
    D
    `48//13`
  • If (125)^(2//3) xx (625)^(-1//4) = 5^(x) , then the value of x is

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    Evaluate each of the following : (i){(81)^(1//5)}^(5//2)" "(ii)(3sqrt(64))^(-2)" "(iii)9^(3//2)+3xx4^(0)-((1)/(81))^(-1//2) (vi)sqrt((1)/(9))+(0.01)^(-1//2)-(27)^(4//3)" "(v)((125)/(64))^(2//3)+((256)/(625))^(-1//4)

    Evaluate : ((64)/( 125))^(-(2)/(3)) +(1)/(((256)/(625) ) ^((1)/(4)))+ ( sqrt(25))/(" ^(3) sqrt(64))

    Prove that: ((64)/(125))^(-(2)/(3))+(1)/(((256)/(625))^((1)/(4)))+((sqrt(25))/(643))^(0)=(61)/(16)

    Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

    Simplify : ( i ) (125)^(-(1)/(3))( ii) (256/81)^(^^)(1/4)

    {((216)/(64))^((2)/(3))*(((256)/(81))^(-(1)/(4)))/(((16)/(144))^(-(1)/(2)))}^((1)/(2))