Home
Class 9
MATHS
If I(n)=int(1)^(e)(log x)^(n)dx then I(8...

If `I_(n)=int_(1)^(e)(log x)^(n)dx` then `I_(8)+8I_(7)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I_(m)=int_(1)^(e)(ln x)^(m)dx,m in N, then I_(10)+10I_(9) is equal to (A) e^(10)(B)(e^(10))/(10)(C)e(D)e-1

If for n ge 1, P_(n) = int_(1)^( e) (log x)^(n) dx , then P_(10) - 90P_(8) is equal to