Home
Class 12
MATHS
The minimum value of e^(2x^2-2x+1)sin^(2...

The minimum value of `e^(2x^2-2x+1)sin^(2x)` is `e` (b) `1/e` (c) 1 (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0

The minimum value of e^((2x^(2) - 2x + 1) sin^(2) x) is a)e b) 1//e c)1 d)0

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

The minimum value of (x)/((log)_(e)x) is e(b)1/e(c)1(d) none of these