Home
Class 12
MATHS
If the function f(x)=(x^2)/2+lnx+a x is...

If the function `f(x)=(x^2)/2+lnx+a x` is always monotonically increasing in its domain then the least value of `a` is 2 (b) `-2` (c) `-1` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=(x^(2))/(2)+ln x+ax is always monotonically increasing in its domain then the least value of a is 2(b)-2(c)-1(d)1

If the function f(x)=2x^(2)+3x-m log x is monotonic decreasing in the interval (0,1) then the least value of the parameter m is

The function f(x)= (x^(2))/(e^(x)) monotonically increasing if

Interval in which the function f(x)=log_((1)/(2))(x^(2)-2x-8) is monotonically increasing,is

The function f(x)=x^(2)e^(-x) is monotonic increasing when (a) x in R-[0,2](b)^(@)0

If the function f(x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at each point of its domain, then the value of f(0) (a) 2 (b) 1/3 (c) -1/3 (d) 2/3

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) 0

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) x in (0,1)