Home
Class 12
MATHS
If y=(x-1)log(x-1)-(x+1)log(x+1) , prove...

If `y=(x-1)log(x-1)-(x+1)log(x+1)` , prove that `(dy)/(dx)=log((x-1)/(1+x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If =(x-1)log(x-1)-(x+1)log(x+1) prove that (dy)/(dx)=log((x-1)/(1+x))

If 'y=(x-1)log(x-1)-(x+1)log(x+1),p rov et h a t(dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))