Home
Class 11
MATHS
" (i) "tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(s...

" (i) "tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2cos^(-1)x ,\ -1/(sqrt(2))\ lt=x\ lt=1

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x+sqrt(1-x)))]=(pi)/(4)-(1)/(2)cos^(-1)x,quad -(1)/(sqrt(2))<=x<=1

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

Write the simplest form : tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))