Home
Class 12
MATHS
lim(n rarr oo)((n!)/(n^(n)))^(1/n)" is "...

lim_(n rarr oo)((n!)/(n^(n)))^(1/n)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

Evaluate: (lim)_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

Evaluate the following define integrals as limit of sums : lim_( n rarr oo) [ (n!)/(n^(n))]^(1/n)

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_(n rarr oo)2^(1/n)