Home
Class 11
MATHS
Prove that: cos((3pi)/2+x)cos(2pi+x)[cot...

Prove that: `cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1`

Text Solution

AI Generated Solution

To prove the equation: \[ \cos\left(\frac{3\pi}{2} + x\right) \cos(2\pi + x) \left[\cot\left(\frac{3\pi}{2} - x\right) + \cot(2\pi + x)\right] = 1 \] we will start by simplifying the left-hand side (LHS). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos((3 pi)/(2)+x)cos(2 pi+x){cot((3 pi)/(2)-x)+cot(2 pi+x)}=1

Prove that: (a) (cos(pi+x) cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x (b) cos((3pi)/2 + x)cos(2pi+x){cot ((3pi)/2-x)+cot(2pi+x)}=1

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi)/(2)+x)=cot^(2)x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x

Prove that cos x+cos((2 pi)/(3)-x)+cos((2 pi)/(3)+x)=0

Prove that: (cos(pi+A)cos(-A))/(sin(pi-A).cos(pi/2+A))=cot^(2)A