Home
Class 12
MATHS
Let f(x) be a polynomial with positive c...

Let `f(x)` be a polynomial with positive coefficients, find `Lim_(x -> oo) ([f(x)])/f([x])`. (where `[.]` denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then