Home
Class 11
MATHS
" If "x=a cos^(3)theta,y=a sin^(2)x," fi...

" If "x=a cos^(3)theta,y=a sin^(2)x," find "(d^(2)y)/(dn^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^(2)theta,y=b sin^(2)theta find (d^2y)/dx^2

If x = a cos^(3)(Theta), y = a sin^(3)(Theta) find (d^(2)y)/(dx^(2)) .

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x = acos^(3)theta , y = a sin^(3)theta ,then find (d^2y)/dx^(2)

If x =a cos ^(3) theta, y= a sin ^(3) theta then (d^(2) y)/( dx ^(2)) at theta = pi //4 is

If x = a sin^3 theta, y = a cos^3 theta , find (d^2y)/(dx^2) at theta = pi/4

If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = (pi)/(2) is …….

If x=cos theta,y sin^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)

If x=a cos^(3)theta and y=a sin^(3)theta, then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(6)