Home
Class 12
MATHS
tan^(-1)[(cos x)/(1+sin x)](3)^(-1)-(pi)...

tan^(-1)[(cos x)/(1+sin x)]_(3)^(-1)-(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

solve: tan^(-1) ((cos x)/(1-sin x)) = ((pi)/(4)+(x)/(2)) , (-3 pi)/(2)ltxlt(pi)/(2)

Express tan^(-1) ((cos x )/( 1- sin x) ) , ( -3 pi)/(2) lt x lt (pi)/(2) in the simplest form

Express 'tan ^(^^)(-1)((cos x)/(1-sin x)),-pi/2

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

If A = 1/pi [(sin^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),cot^(-1)(pix))] B = 1/pi [(-cos^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),-tan^(-1)(pix))] then A-B is equal to :

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

cos^(-1)backslash(x^(2)-1)/(x^(2)+1)+sin^(-1)backslash(2x)/(x^(2)+1)+tan^(-1)backslash(2x)/(x^(2)-1)=(2 pi)/(3)