Home
Class 11
MATHS
cos^(2)45^(@)-sin^(2)15^(@)=(sqrt(3))/(4...

cos^(2)45^(@)-sin^(2)15^(@)=(sqrt(3))/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

The value of cos^(2)45^(@)-sin^(2)15^(@) is

Prove that: cos^2 45^0-sin^2 15^0=(sqrt(3))/4

The value of cos ^(2)45^(@) - sin^(2)15^(@) is

cos45^(@)cos60^(@)-sin45^(@)sin60^(@)=(sqrt(3-1))/(2sqrt(2))

cos45^(@)cos60^(@)-sin45^(@)sin60^(@)=(sqrt(3)-1)/(2sqrt(2))

(cos15^(@)+sin15^(@))/(cos15^(@)-sin15^(@))=(i)1(ii)sqrt(3)(iii)(1)/(sqrt(3))(iv)2+sqrt(3)

(cos 75^(@)+cos15^(@))/(sin75^(@)-sin 15^(@))=sqrt(3)

(cos 75^(@)+cos15^(@))/(sin75^(@)-sin 15^(@))=sqrt(3)