Home
Class 12
MATHS
" The derivative of "tan^(4)((sqrt(1+x^(...

" The derivative of "tan^(4)((sqrt(1+x^(2))-1)/(x))" w.r.t "tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))" at "x=0" is "k." then "4x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. sin^(-1)((2x)/(1+x^(2))) is