Home
Class 11
MATHS
Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,...

Solve: `16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

No of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<=2 pi is

Total number of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10" in "[0,2pi] are

If 0 <= x <= pi, then the solution of the equation 16^(sin^2) x + 16 ^(cos^2) x = 10 is given by x equal to (i) pi/6,pi/3 (ii) pi/3,pi/2 (iii) pi/6,pi/2 (iv) none of these

Solve :3sin^(2)x-sin x cos x-4cos^(2)x=0

Solve: (x^(2)-3x)^(2)-16(x^(2)-3x)-36=0

Total number of solution of 16^(cos^(2)x)+16^(sin^(2)x)=10 in x in[0,3 pi] is equal to (A)4(B)8(C)12(D)16

solve 16x^(2)+17x+5

Solve 16x^(2)+4=0