Home
Class 11
MATHS
Minimum value of (sec^4alpha)/(tan^2beta...

Minimum value of `(sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha),` where `alpha!=pi/2,beta!=pi/2`,0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)

If x sec alpha+y tan alpha=x sec beta+y tan beta=a , then sec alpha*sec beta=

The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if

If sec alpha is the average of sec(alpha-2 beta) and sec(alpha+2 beta) then the value of (2sin^(2)beta-sin^(2)alpha) where beta!=n pi is

Maximum value of sin alpha+sin beta+2, where alpha +beta =120^(^^)@ alpha,beta in (0,pi/2)

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

cos alpha=(2cos beta-1)/(2-cos beta)(0

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If "2sec" (2alpha) = "tan" beta + "cot"beta , then one of the value of alpha + beta is