Home
Class 12
MATHS
The base vectors veca1, veca2, veca3 are...

The base vectors `veca_1, veca_2, veca_3` are given in terms vectors `vecb_1, vecb_2, vecb_3`, `veca_1=2vecb_1+3vecb_1-vecb_1, veca_2=veca_1-2vecb_2+2vecb_3, veca_3=-2vecb_1+vecb_2-2vecb_3`,if `vec F_1=3vecb_1-vecb_2+2vecb_3`, Express `vecF` in terms of `veca_1, veca_2, veca_3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The base vectors veca_1,veca_2,veca_3 are given in terms of base vectors vecb_1,vecb_2,vecb_3 as veca_1=2vecb_1+3vecb_2-vecb_3, veca_2=vecb_1-2vecb_2+vecb_3 and veca_3= 2vecb_1+vecb_2-2vecb_3. If vecF=3vecb_1-vecb_2+2vecb_3 then express vecF in terms of veca_1, veca_2 and veca_3.

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca-(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=