Home
Class 11
MATHS
The number of values of theta in the in...

The number of values of `theta` in the interval `(-pi/2,pi/2)` satisfying the equation `(sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta` is

A

2

B

4

C

0

D

1

Text Solution

Verified by Experts

`tan^(4) theta+2 tan^(2) theta=(tan^(2) theta+1)^(2)-1=(sec^(2) theta)^(2) -1=sec^(4) theta-1`
Puutting `sec^(2) theta=t` we get
`(sqrt(3))^(t)=t^(2)-1`
`rArr t=2` is the only solution as `t gt 1`
Hence, there will be 2 values of `theta` in given interval.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

Find the values of theta in the interval (-(pi)/(2),(pi)/(2)) satisfying the equation (1-tan theta)(1+tan theta)sec^(2)theta+2^(tan^(2)theta)=0

The number of values of theta in [0,2 pi] satisfying the equation 2sin^(2)theta=4+3cos theta are

Find all the values of theta in (-(pi)/(2),(pi)/(2)) which satisfy the equation (1-tan theta)(1+sin2 theta)=(1+tan theta) is

tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=2tan2 theta

If the sum of all values of theta , 0 le theta le 2 pi satisfying the equation (8 cos 4 theta - 3) ( cot theta + tan theta -2 ) ( cot theta + tan theta + 2) = 12 is k pi , then k is equal to :

The number of values of theta in the interval [-(pi)/(2),(pi)/(2)] and theta!=(n pi)/(5) is where n=0,+-1,+-2 and tan theta=cot(5 theta) and sin(2 theta)=cos(4 theta) is

The number of values of theta in [(-3pi)/(2), (4pi)/(3)] which satisfies the system of equations. 2 sin^(2) theta + sin ^(2) 2 theta = 2 and sin 2 theta + cos 2 theta = tan theta is

int_(0)^((pi)/(2))(sec theta-tan theta)d theta

The general value of theta satisfying the equation tan^(2)theta+sec2 theta=1 is