Home
Class 11
MATHS
The value of 3(sin^4t+cos^4t-1)/(sin^6t+...

The value of `3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1)` is equal to __________

Promotional Banner

Similar Questions

Explore conceptually related problems

Find : ( Sin^4t + Cos^4t - 1 ) /( Sin^6t + Cos^6t -1 ) =

The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) is equal to

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If sin t+cos t=(1)/(5) then tan((t)/(2)) is equal to:

Derivative of sin(3sin^(-1)x)+cos(3cos^(-1)x)w.r.t.x is equal to

x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t

If x=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

x=2 cos^2 t, y= 6 sin ^2 t

If x=a(t-sin t),y=a(1-cos t), then (dy)/(dx) is equal to

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is