Home
Class 12
MATHS
If veca , vec b , vec c are the position...

If` veca , vec b , vec c` are the position vectors of the vertices `A ,B ,C` of a triangle `A B C ,` show that the area triangle `A B Ci s1/2| vec axx vec b+ vec bxx vec c+ vec cxx vec a|dot` Deduce the condition for points ` veca , vec b , vec c` to be collinear.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are the position vectors of the vertices A,B,C of a triangle ABC, show that the area triangle ABCis(1)/(2)|vec a xxvec b+vec b xxvec c+vec c xxvec a| Deduce the condition for points vec a,vec b,vec c to be collinear.

If vec(a), vec(b), vec(c) are the position vectors of vertices A, B, C of a triangle ABC, Show that the area of the triangle is (1)/(2) |vec(b) xx vec(c) + vec(c) xx vec(a) + vec(a) xx vec(b)|

Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|

If vec a ,\ vec b ,\ vec c are position vectors of the vertices A ,\ B\ a n d\ C respectively, of a triangle A B C ,\ write the value of vec A B+ vec B C+ vec C Adot

If vec a+ vec b + vec c= 0 , show that vec axxvec b= vec bxx vec c= vec cxx vec a .

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/((vec b- vec a).(vec d- vec a)) + (| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/((vec b- vec c).( vec d- vec c))=0dot

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is paralelto vec b- vec c

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c