Home
Class 11
MATHS
Prove that: cos^2 theta+ cos^2(pi/3+thet...

Prove that: `cos^2 theta+ cos^2(pi/3+theta)+cos^2(pi/3-theta)=3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2cos theta cos((pi)/(3)+theta)cos((pi)/(3)-theta)=cos3 theta

Prove that : cos^2 theta+ cos^2 ((2pi)/3 -theta) + cos^2 ((2pi)/3 +theta) = 3/2

Prove that: 4\ costhetacos\ (pi/3+theta)cos(pi/3-theta)=cos3theta

Prove that cos theta +cos ((2pi)/(3)-theta)+cos ((2pi)/(3)+theta)=0

Prove that cos theta + cos ((2pi)/(3)- theta)+ cos ((2pi)/(3)+ theta)=0

cos((3pi)/2+theta)=

Prove that: cos^(2)theta+cos^(2)((2 pi)/(3)-theta)+cos^(2)((2 pi)/(3)+theta)=(3)/(2)

Prove that cos^(2)theta+cos^(2)((2pi)/(3)+theta)+cos^(2)((2pi)/(3)-theta)=(3)/(2)

Prove that cos theta + cos[(2pi)/3 + theta] + cos [(4pi)/(3) + theta] = 0 .

If theta=(pi)/(7), prove that cos theta cos2 theta cos3 theta=(1)/(2^(3))