Home
Class 11
MATHS
If x, y, z are distinct real numbers the...

If `x, y, z` are distinct real numbers then the value of `(1/(x-y))^2+(1/(y-z))^2+(1/(z-x))^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z, are real and distinct number, then the value of ((x-y)^3+(y-z)^3+(z-x)^2)/((x-y)(y-z)(z-y)) is

If x,y,z are all different real numbers,then prove that (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-z)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are all different real numbers,then (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are all different real numbers,then (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x , y , z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x , y , z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x ,y ,z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x, y, z are distinct positive numbers such that x+(1)/(y)=y+(1)/(z)=z+(1)/(x) , then the value of xyz is __________