Home
Class 11
MATHS
By geometrical interpretation, prove tha...

By geometrical interpretation, prove that
(i) `sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha`
(ii) `cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

Prove by vector methods that sin(alpha+beta)=sin alpha cos beta+cos alpha sin beta

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

Show by vector method that sin(alpha-beta)=sinalphacosbeta-cosalpha sinbeta.

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

Evaluate: quad =|cos alpha cos beta cos alpha sin beta-sin alpha-sin beta cos beta0sin alpha cos beta sin alpha sin beta cos alpha|

Prove that 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=cos2 alpha

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)