Home
Class 11
MATHS
Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)c...

Let `f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_1+x)++1/(2^(n-1))cos(a_n+x)` where `a)1,a_2 a_n in Rdot` If `f(x_1)=f(x_2)=0,t h e n|x_2-x_1|` may be equal to `pi` (b) `2pi` (c) `3pi` (d) `pi/2`

A

`pi`

B

`2pi`

C

`3pi`

D

`pi//2`

Text Solution

Verified by Experts

`f(x)=(cos a_(1)+(cos a_(2))/2+...+(cos a_(n))/2^(n-1))cos x-((sin a_(1))1+(sin a_(2))/2+...+(sin a_(n))/2^(n-1)) sin x`
`rArr f(x)=A cos x-B sin x`
Now `f(x_(1))=f(x_(2))=0`
`rArr {:(A cos x_(1)- B sin x_(1)=0),(A cos x_(2)-B sin x_(2)=0):}}`
`rArr tan x_(1) = tan x_(2)`
`rArr x_(1)=n pi +x_(2) rArr x_(1)-x_(2)=n pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=1+2sin x+2cos^(2)x,0<=x<=(pi)/(2) then

Let f(x)=(2cos x-1)(2cos2x-1)(2cos2^(2)x-1)...(2cos2^(n)x-1) (where n>=1). Then prove that f((2 pi k)/(2^(n)+-1))=1AA k in I

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)

(x^(2)-2x(cos pi)/(n)+1)(x^(2)-2x(cos(2 pi))/(n)+1)(x^(2)-2(cos(n-1))/(n)pi+1) equal to

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2