Home
Class 12
MATHS
Show that vectors |bar b |bar a+|bar a| ...

Show that vectors `|bar b |bar a+|bar a| bar b and |b|bar a-|a|bar b` are orthogonal

Promotional Banner

Similar Questions

Explore conceptually related problems

|bar(b)|bar(a)+|bar(a)|bar(b) and |bar(b)|bar(a)-|bar(a)|bar(b) are orthogonal to each other

(d) answer ANY one question :1. bar a, bar b and bar c be three vectors such that bar a +bar b+ bar c =0 and |bar a|=1, |bar b|=4,|bar c |=2 . Evlautae bar a.bar b + bar b.bar c+bar c.bar a .

If for unit vectors bar(a) and bar(b),bar(a)+2bar(b) and 5bar(a)-4bar(b) are perpendicular to each other, then (bar(a)^^bar(b))=

Given four non zero vectors bar a,bar b,bar c and bar d. The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Let bar(a) and bar(b) be unit vector.If the vectors bar(c)=bar(a)+2bar(b) and bar(d)=5bar(a)-4bar(b) are perpendicular to the each other then angle between bar(a) and bar(b) is

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals