Home
Class 12
MATHS
If log5(5^(1/x)+125)=log5 6+1+1/(2x), th...

If `log_5(5^(1/x)+125)=log_5 6+1+1/(2x)`, then `x` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_5(5^(1/x)+125)= log_5 6+1+1/(2)x .

Solve for x:log_(5)(5^(1//x)+125)=log_(5)6+1+1//2x

log_5 ((2+x)/10)=log_5 (2/(x+1))

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to

log5+log(5x+1)=log(x+5)+1

If log_(x) (sqrt5) = 1/6, "then" x =

If log(x-y)-log5-(1)/(2)log x-(1)/(2)log y=0 then (x)/(y)+(y)/(x) is equal to

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is