Home
Class 12
MATHS
If f(x)=int(tan^(3)x-x tan^(2)x)dx Where...

If `f(x)=int(tan^(3)x-x tan^(2)x)dx` Where `f(0)=0` and `lim_(x rarr0)(f(x))/(x^(m))` is non-zero finite then m=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)(tan x-x)/(x^(3))

lim_(x rarr0)(tan x-x)/(x^(3))

lim_(x rarr0)(tan x^(3))/(x)

lim_(x rarr0)(tan x^(@))/(x)

Lim_(x rarr0)(Tan x)/(x)

lim_(x rarr0)(tan^(-1)a)/(x^(2))

lim_(x rarr0) [(tan x)/(x)]

Lim_(x rarr0)(x-tan x)/(x^(3))