Home
Class 12
MATHS
If alpha=tan^(-1)x+tan^(-1)((1)/(x)) bet...

` If alpha=tan^(-1)x+tan^(-1)((1)/(x)) beta=cot^(-1)x+cot^(-1)((1)/(x)) `then the value of` alpha^(2)+beta^(2)` can be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

If alpha=sin^(-1)(cos(sin^(-1)x)) and beta=cos^(-1)(sin(cos^(-1)x)) then find tan alpha.tan beta

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

tan^(-1)(cot x)-tan^(-1)(cot2x)=

If alpha = tan^(-1) ((xsqrt(3))/(2y - x)) and beta = tan^(-1) ((2x - y)/(ysqrt(3))) evaluate : alpha - beta .

If alpha,beta are the roots of the equation cot^(-1)x-cot^(-1)(x+2)=15^(@) then the value of -(alpha+beta) is

if cot^(-1)alpha+cot^(-1)beta=cot^(-1)x then x

tan(alpha+beta)=(1)/(2),tan(alpha-beta)=(1)/(3), then find the value of tan2 alpha

alpha = sin ^ (- 1) (cos (sin ^ (- 1) x)) and beta = cos ^ (- 1) (sin (cos ^ (- 1) x)) then tan alpha tan beta