Home
Class 12
MATHS
intsqrt(e^(x)-1)dx=K(sqrt((e^(x)-1))-tan...

`intsqrt(e^(x)-1)dx=K(sqrt((e^(x)-1))-tan(f(x))+c)` then K.f(0)=

Promotional Banner

Similar Questions

Explore conceptually related problems

intsqrt(x)e^(sqrt(x))dx=

intsqrt((e^x+1)/(e^x-1))dx

int sqrt(e^(x)-1)dxi sequa

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is