Home
Class 12
MATHS
The function f(x) is defined for all rea...

The function `f(x)` is defined for all real `x` .If `f(x+y)=f((xy)/(4))AA x y` and `f(-4)=-4` then `|f(2016)|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) is defined for all real x and satisfied f(x+y)=f(xy),AA x,y. If f(1)=-1 then f(2006) equals

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

If f(x+y)=f(xy) AA x, y epsilon R, and f (2013) =2013 , then f(-2013) equals

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f is defined such that for all real x,y(a)f(x+y)=f(x).f(y)(b)f(x)=1+xg(x) where lim_(x rarr0)g(x)=1 prove that f;(x)=f(x) and f(x)=e^(x)

If f(x+y)=f(x)f(y) for all real x and y, f(6)=3 and f'(0)=10 , then f'(6) is

Let f be a function defined by f(xy)=(f(x))/(y), AA x, y in R^(+) .If f(30)=20 .Then f(40)=

A real valued function f(x) is satisfying f(x+y)=yf(x)+xf(y)+xy-2 for all x,y in R and f(1)=3, then f(11) is

A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equals

If f is a differentiable function satisfying 2f(x)=f(xy)+f((x)/(y)),AA x,y in R^(+), f(1)=0 and f'(1)=(1)/(ln6), then f(7776) =