Home
Class 12
MATHS
If veca, vecb and vec c are unit vectors...

If `veca, vecb` and `vec c` are unit vectors satisfying `|veca- vecb|^2+|vecb-vec c|^2+ |vec c-veca|^2 = 9` then `|2veca+7vecb+7vec c|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vec c are unit vectors, then the value of |veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2) does not exceed to :

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| = 4,|vec c| = 5, |veca + vecb + vec c | = 0 then the value of veca.vecb + vecb.vec c + vec c .vec a is :

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

If veca, vecb, vecc are three vectors such that veca + vecb+ vecc =0 and |veca| =5, |vecb|=12.|vecc|=13, then find vecavecb+vecb vec c + vec c veca

Let veca, vecb and vec c be any three vectors; then prove that [[vecaxxvecb, vecbxxvecc, veccxxveca]] = [[veca, vecb, vecc]]^2

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is