Home
Class 12
MATHS
If I(n)=int(0)^(pi/4)tan^(n)xdx then I(2...

If `I_(n)=int_(0)^(pi/4)tan^(n)xdx` then `I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ......` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^((pi)/(4))sec^(n)dx then I_(10)-(8)/(9)I_(8)=

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

If I_(n)=int_(0)^((pi)/(4))tan^(n)theta then I_(8)+I_(6) equals

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, show that (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),(1)/(I_(5)+I_(7)),... form an A.P. Find the common difference of this progression.