Home
Class 11
MATHS
z=(1-i)/(cos(pi/3)+i sin(pi/3))...

`z=(1-i)/(cos(pi/3)+i sin(pi/3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

.Modulus of the function z=(i-1)/(cos pi/3+i sin pi/3) is

If i=sqrt(-1) then (cos(pi/3)+i sin(pi/3))^3=

Convert z=(i-1)/("cos"(pi)/(3)+"isin"(pi)/(3)) in polar form.

Prove that (i)(1-sqrt(3)i)=2((cos)(pi)/(3)-i(sin)(pi)/(3))

If z_(1)=sqrt(2)((cos pi)/(4)+i sin((pi)/(4))) and z_(2)=sqrt(3)((cos pi)/(3)+i sin((pi)/(3))) then |z_(1)z_(2)|=

Find the modulus and argument of the following complex number and correct then in polar form: (i-1)/((cos pi)/((cos pi)/(3)+i(sin pi)/(3)))

If z_r=cos(pi/3^r)+i sin(pi/3^r) where r in N then z_1.z_2.z_3...oo=