Home
Class 12
MATHS
P(alpha,f(alpha)) and Q(beta,f(beta)) ar...

`P(alpha,f(alpha))` and `Q(beta,f(beta))` are ends of an arc in the first quadrant. The area bounded by the arc, ordinates through `P` and `Q`, and the x-axis is (A) `int_(f(alpha))^(f(beta)) f^-1(y)dy` (B) `int_alpha^beta f^-1(y)dy` (C) `int_alpha^beta f(x)dx` (D) `int_(f(alpha))^(f(beta)) f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

If f(x)=(cotx)/(1+cotx)andalpha+beta=(5pi)/(4) , then find f(alpha).f(beta) .

If alpha and beta be the zeroes of the quadratic polynomial f(x)=x^2-7x-4 then alpha/beta+beta/alpha=

Evaluate: int(1)/((x-alpha)(beta-x))dx,(beta>alpha)

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

The value of the integral int_alpha^beta (1)/(sqrt((x-alpha)(beta-x)))dx " for "beta gt alpha , is