Home
Class 11
MATHS
If cos(A+B+C)=cosAcosBcosC , then find t...

If `cos(A+B+C)=cosAcosBcosC ,` then find the value of `(8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of sin(A+B)sin(A-B)+sin(B+C)sin(B-C)+sin(C+A)sin(C-A) ?

In /_ABC if cos A cos B+sin A sin B sin C=1, then the value of (sin^(2)A)/(sin^(2)B)+2(sin^(2)B)/(sin^(2)C)+(sin^(2)C)/(sin^(2)A) is equal to

In quadrilateral ABCD, if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 then find the value of sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to-

Prove that: (sin(A-C)+2sin A+sin(A+C))/(sin(B-C)+2sin B+sin(B+C))=(sin A)/(sin B)

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to

Prove that: (cos(A+B+C)+cos(-A+B+C)+cos(A-B+C)+cos(A+B-C))/(sin(A+B+C)+sin(-A+B+C)+sin(A-B+C)-sin(A+B-C))=

(cos A)/(sin B sin C)+(cos B)/(sin C sin A)+(cos C)/(sin A sin B)=2