Home
Class 12
MATHS
If |veca+vecb|=|veca-vecb|, show that th...

If `|veca+vecb|=|veca-vecb|,` show that the vectors `veca and vecb` are perpendicular to each other.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca+vecb|=|veca-vecb| , then show that vectors veca and vecb are perpendicular to each other.

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If |veca + vecb | =|veca - vecb | then show that veca and vecb are perpendicular .

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If |veca+vecb|=|veca-vecb| then show that veca and vecb are perpendicular.

If veca and vecb are two vectors such that |veca+vecb|=|veca| , then prove that the vector 2veca+vecb is perpendicular to vector vecb .

If veca=hati+2hatj-3hatk and vecb=3hati+hatj+2hatk show that the vectors veca+vecb and veca-vecb are perpendicular to other.

If veca=hati+2hatj-3hatk and vecb=3hati+hatj+2hatk show that the vectors veca+vecb and veca-vecb are perpendicular to other.