Home
Class 12
MATHS
y=tan^(-4)((3x-x^(3))/(1-3x^(2))),-(1)/(...

y=tan^(-4)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find quad (dy)/(dx) in the following: y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

If y=tan^(-1)((3x-x^(3))/(1-3x^(2))),(1)/(sqrt(3))

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -1/(sqrt(3))

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))