Home
Class 11
MATHS
In A B C ,(sinA(a-bcosC)/(sinC(c-bcosA)...

In ` A B C ,(sinA(a-bcosC)/(sinC(c-bcosA)=` `-2` (b) `-1` (c) `0` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

In A B C , if (sinA)/(csinB)+(sinB)/c+(sinC)/b=c/(a b)+b/(a c)+a/(b c), then the value of angle A is 120^0 (b) 90^0 (c) 60^0 (d) 30^0

In triangleABC, a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

In a /_\ABC , cosec A[sinB.cosC+cosB.sinC]= (A) c/a (B) a/c (C) 1 (D) none of these

If sinA+sinB+sinC=3 . Then: cosA+cosB+cosC= (a) 0 (b) 1 (c) 2 (d) 3

If (sinA-sinC)/(cosC-cosA)=cotB , then A, B, C are in

In !ABC , if (sinA)/(csinB)+(sinB)/c+sinC)/b=c/(ab)+b/(ac)+a/(bc) then the value of A , is

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c