Home
Class 12
MATHS
If the line hx + ky = 1/a touches the ci...

If the line `hx + ky = 1/a` touches the circle `x^2 + y^2 = a^2 ` then the locus of `(h,k)` is circle of radius

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line hx + ky = 1 touches x^(2)+y^(2)=a^(2) , then the locus of the point (h, k) is a circle of radius

If the line hx + ky = 1 touches x^(2)+y^(2)=a^(2) , then the locus of the point (h, k) is a circle of radius

If the line hx+ky=1 touches x^2+y^2=a^2 , then the locus of the point (h,k) is a circle of radius

If the chord of contact of tangents from a point (x_1, y_1) to the circle x^2 + y^2 = a^2 touches the circle (x-a)^2 + y^2 = a^2 , then the locus of (x_1, y_1) is

If the chord of contact of tangents from a point P (x_1,y_1) to the circle x^2+y^2=a^2 touches the circle (x-a)^2+y^2 = a^2 , then the locus of (x_1, y_1) is :

If the line y=sqrt(3)x+k touches the circle x^(2)+y^(2)=16, then find the value of k

If the chord of contact of tangents from a point (x_1,y_1) to the circle x^2+y^2=a^2 touches the circle (x-a)^2+y^2=a^2 , then the locus of (x_1,y_1) is :

Find k , if the line y = 2x + k touches the circle x^(2) + y^(2) - 4x - 2y =0

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

If a variable circle 'C' touches the x-axis and touches the circle x^2+(y-1)^2=1 externally, then the locus of centre of 'C' can be: