Home
Class 10
MATHS
[" THP "(I)sin^(-1)x+sin^(-1)y+sin^(-1)z...

[" THP "(I)sin^(-1)x+sin^(-1)y+sin^(-1)z=pi*" fid at for (prove that) "],[x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin ^(-1 )""x + sin ^(-1) y + sin ^(-1) z= pi prove that , x sqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt( 1-z^(2))= 2 xyz.

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If Sin^(-1)(x)+Sin^(-1)(y)+Sin^(-1)(z) = pi , prove that xsqrt(1-x^(2)) + ysqrt(1-y^(2)) +zsqrt(1-z^(2)) = 2xyz .

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=pi then prove that n xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xy z