Home
Class 11
MATHS
If (secA+tanA)(secB+tanB)(secC+tanC)=(se...

If `(secA+tanA)(secB+tanB)(secC+tanC)=``(secA-tanA)(secB-tanB)(secC-tanC),` prove that the value of each side is +-1.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC) , prove that value of each side is pm1 .

If (secA-tanA)(secB-tanB)(secC+tanC)=(secA+tanA)(secB+tanB)(secC-tanC) then each side is equal to

If p=(secA - tanA) (secB - tanB) (secC - tanC) = (secA + tanA) (secB + tanB)(secC + tanC) , then value of p is:

secA(1-sinA)(secA+tanA)=1

(tanA)/(1+secA) - (tanA)/(1-secA) = 2cosecA

If secA+tanA=p , then what is the values of sin A?

Prove that : (secA-tanA)/(secA+tanA)=1-2secAtanA+2tan^(2)A

Prove that : (secA+1)/(tanA)=(tanA)/(secA-1)

Find the value of (tanA+secA-1)cosA .