Home
Class 12
CHEMISTRY
An element with molar mass 2.7xx10^(-2) ...

An element with molar mass `2.7xx10^(-2)` kg per mole forms a cubic unit cell with edge length 405 pm. If its density is `2.7xx10^(3)` , what is the nature of the cubic unit cell ?

Text Solution

AI Generated Solution

To determine the nature of the cubic unit cell for the given element, we will follow these steps: ### Step 1: Convert Given Values - **Molar Mass (M)**: \(2.7 \times 10^{-2} \, \text{kg/mol}\) - **Edge Length (a)**: \(405 \, \text{pm} = 405 \times 10^{-12} \, \text{m} = 4.05 \times 10^{-10} \, \text{m}\) - **Density (\(\rho\))**: \(2.7 \times 10^{3} \, \text{kg/m}^3\) ### Step 2: Use the Density Formula ...
Promotional Banner

Similar Questions

Explore conceptually related problems

An element with molor mass 27 g mol^(-1) forms a cubic unit cell with edge length 4.05 xx 10^(-8) cm . If its density is 2.7 g cm^(-3) , what is the nature of the unit cell?

An element with molar mas 2.7xx10^(-2)" kg mol"^(-1) forms a cubic unit cell with edge length 405 pm. If its density is 2.7xx10^(-3)kgm^(-3) , the radius of the element is approximately ______ xx 10^(-12) m (to the nearest integer).

An element with density 10 g cm^(-3) forms a cubic unit cell with edge length 3xx10^(-8)cm . What is the nature of the cubic unit cell if the atomic mass of the element is 81 g mol^(-1) .

Aluminium(a.w=27) crystalises in a cubic unit cell with edge length (a)=100pm, with density 'd'=180g/cm, then type of unit cell is