Home
Class 12
PHYSICS
Find unit vectors along overset(rarr)A=...

Find unit vectors along `overset(rarr)A=hat I + hat j - 2 hat k` and `overset(rarr)B=hat I +2 hat j -hat k`

Text Solution

AI Generated Solution

To find the unit vectors along the vectors \(\overset{\rarr}{A} = \hat{i} + \hat{j} - 2\hat{k}\) and \(\overset{\rarr}{B} = \hat{i} + 2\hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Find the magnitude of vector \(\overset{\rarr}{A}\) The magnitude of a vector \(\overset{\rarr}{A} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by the formula: \[ |\overset{\rarr}{A}| = \sqrt{a^2 + b^2 + c^2} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Following forces start acting on a particle at rest at the origin of the co-ordinate system overset(rarr)F_(1)=-4 hat I -5 hat j +5hat k , overset(rarr)F_(2)=5hat I +8 hat j +6hat k , overset(rarr)F_(3)=-3hat I + 4 hat j - 7 hat k and overset(rarr)F_(4)=2hat i - 3 hat j - 2 hat k then the particle will move

The area of parallelogram represented by the vectors overset(rarr)A = 2 hat i + 3 hat j and overset(rarr)B=hat i+4 hat j is

What is the projection of vector overset(rarr)A=4hat I +3 hatj on vector overset(rarr)B=3hat I +4 hat j ?

Consider a system of two vectors overset(rarr)a=3hat I +4 hat j, overset(rarr)b=hat i+hatj ,

Find a unit vector parallel to the resultant of vectors vec A = 3 hat I + 3 hat j - 2 hat k and vec B= hat i- 5 hat j + hat k .

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

What is the torque of a force overset(rarr)F=(2 hat i -3 hat j +4 hat k) Newton acting at a point overset(rarr)r=(3 hat I +2 hat j + 3 hat k) metre about the origin ?

Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).