Home
Class 12
PHYSICS
If three forces 2 hat i +3 hat j - hatk ...

If three forces `2 hat i +3 hat j - hatk` and `3 hat I -18hat j -4hatk` and `a( hat i -3 hat j - hatk) ` hold a particle in equilibrium .Then a is

A

5

B

`-5`

C

10

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the three forces acting on a particle result in equilibrium. This means that the sum of the forces must equal zero. ### Step-by-Step Solution: 1. **Identify the Forces**: We have three forces given: - \( \mathbf{F_1} = 2\hat{i} + 3\hat{j} - \hat{k} \) - \( \mathbf{F_2} = 3\hat{i} - 18\hat{j} - 4\hat{k} \) - \( \mathbf{F_3} = a(\hat{i} - 3\hat{j} - \hat{k}) = a\hat{i} - 3a\hat{j} - a\hat{k} \) 2. **Write the Equation for Equilibrium**: For the particle to be in equilibrium, the sum of the forces must equal zero: \[ \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} = 0 \] 3. **Combine the Forces**: Substitute the forces into the equation: \[ (2\hat{i} + 3\hat{j} - \hat{k}) + (3\hat{i} - 18\hat{j} - 4\hat{k}) + (a\hat{i} - 3a\hat{j} - a\hat{k}) = 0 \] 4. **Group the Components**: Combine the \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) components: - \( \hat{i} \) components: \( 2 + 3 + a = 5 + a \) - \( \hat{j} \) components: \( 3 - 18 - 3a = -15 - 3a \) - \( \hat{k} \) components: \( -1 - 4 - a = -5 - a \) Thus, we have: \[ (5 + a)\hat{i} + (-15 - 3a)\hat{j} + (-5 - a)\hat{k} = 0 \] 5. **Set Each Component to Zero**: For the equation to hold true, each component must equal zero: - \( 5 + a = 0 \) - \( -15 - 3a = 0 \) - \( -5 - a = 0 \) 6. **Solve for \( a \)**: - From \( 5 + a = 0 \): \[ a = -5 \] - From \( -15 - 3a = 0 \): \[ -3a = 15 \implies a = -5 \] - From \( -5 - a = 0 \): \[ -a = 5 \implies a = -5 \] All three equations give the same result: \( a = -5 \). ### Final Answer: The value of \( a \) is \( -5 \).

To solve the problem, we need to find the value of \( a \) such that the three forces acting on a particle result in equilibrium. This means that the sum of the forces must equal zero. ### Step-by-Step Solution: 1. **Identify the Forces**: We have three forces given: - \( \mathbf{F_1} = 2\hat{i} + 3\hat{j} - \hat{k} \) - \( \mathbf{F_2} = 3\hat{i} - 18\hat{j} - 4\hat{k} \) - \( \mathbf{F_3} = a(\hat{i} - 3\hat{j} - \hat{k}) = a\hat{i} - 3a\hat{j} - a\hat{k} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 3 hat i +3 hat j +9 hat k and hat i +a hat j +3 hat k are parallel, then a =

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i-3 hat k) are collinear.

Find the angul between two vectors A= 2 hat j + hat j - hat k and B=hat j - hat k and B = hati - hatk .

Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3hat(k)) and C acting on a body to keep it in equilibrium. The C is :

A line passes through (3, -1, 2) and perpendicualr to thelines bar r = (hat i +hat j - hat k)+ lambda(2 hat i -2 hat j +hat k )" and " bar r= (2 hat i + hat j -3 hatk )+ mu( hat i-2 hat j +2 hat k), find its equation .

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

If the vectors 2 hati +3 hat j +chatj and -3hat i+6hatk are orthogonal, the value of c is :

The value of p so that vectors 2hat i-hat j+hat k , hat i+2hat j-3hat k and 3hat i+phat j+5hat k are coplanar is

The angle between (hat i +hat j ) and (hat i - hat j) is _____.

Find the area of the parallelogram determined by the vectors: 2hat i and 3hat j2hat i+hat j+3hat k and hat i-hat j3hat i+hat j-2hat k and hat i-3hat j+4hat khat i-3hat j+hat k and hat i+hat j+hat k