Home
Class 12
PHYSICS
For any two vectors barA and barB if b...

For any two vectors `barA` and `barB` if `barA.barB=|bar AxxbarB|`, the magnitude of `barC=barA+barB` is equal to :

A

`sqrt(A^(2)+B^(2))`

B

`A+B`

C

`sqrt(A^(2)+B^(2)+(AB)/sqrt(2)`

D

`sqrt(A^(2)+B^(2)+sqrt(2)xxAB`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \( \bar{C} = \bar{A} + \bar{B} \) given that \( \bar{A} \cdot \bar{B} = |\bar{A} \times \bar{B}| \), we can follow these steps: ### Step 1: Understand the given condition We know that: \[ \bar{A} \cdot \bar{B} = |\bar{A} \times \bar{B}| \] This condition implies a specific relationship between the vectors \( \bar{A} \) and \( \bar{B} \). ### Step 2: Use the formulas for dot and cross products The dot product is given by: \[ \bar{A} \cdot \bar{B} = |\bar{A}| |\bar{B}| \cos \theta \] The magnitude of the cross product is given by: \[ |\bar{A} \times \bar{B}| = |\bar{A}| |\bar{B}| \sin \theta \] Setting these equal gives us: \[ |\bar{A}| |\bar{B}| \cos \theta = |\bar{A}| |\bar{B}| \sin \theta \] ### Step 3: Simplify the equation Assuming \( |\bar{A}| \) and \( |\bar{B}| \) are not zero, we can divide both sides by \( |\bar{A}| |\bar{B}| \): \[ \cos \theta = \sin \theta \] This implies: \[ \tan \theta = 1 \quad \Rightarrow \quad \theta = 45^\circ \] ### Step 4: Substitute \( \theta \) into the formulas Now, substituting \( \theta = 45^\circ \) into the formulas for dot and cross products: \[ \bar{A} \cdot \bar{B} = |\bar{A}| |\bar{B}| \cos 45^\circ = |\bar{A}| |\bar{B}| \cdot \frac{1}{\sqrt{2}} \] \[ |\bar{A} \times \bar{B}| = |\bar{A}| |\bar{B}| \sin 45^\circ = |\bar{A}| |\bar{B}| \cdot \frac{1}{\sqrt{2}} \] ### Step 5: Find the magnitude of \( \bar{C} \) The magnitude of \( \bar{C} = \bar{A} + \bar{B} \) is given by: \[ |\bar{C}| = \sqrt{|\bar{A}|^2 + |\bar{B}|^2 + 2(\bar{A} \cdot \bar{B})} \] Substituting \( \bar{A} \cdot \bar{B} \): \[ |\bar{C}| = \sqrt{|\bar{A}|^2 + |\bar{B}|^2 + 2\left(|\bar{A}| |\bar{B}| \cdot \frac{1}{\sqrt{2}}\right)} \] This simplifies to: \[ |\bar{C}| = \sqrt{|\bar{A}|^2 + |\bar{B}|^2 + \sqrt{2} |\bar{A}| |\bar{B}|} \] ### Conclusion Thus, the magnitude of \( \bar{C} \) is: \[ |\bar{C}| = \sqrt{|\bar{A}|^2 + |\bar{B}|^2 + \sqrt{2} |\bar{A}| |\bar{B}|} \]

To find the magnitude of the vector \( \bar{C} = \bar{A} + \bar{B} \) given that \( \bar{A} \cdot \bar{B} = |\bar{A} \times \bar{B}| \), we can follow these steps: ### Step 1: Understand the given condition We know that: \[ \bar{A} \cdot \bar{B} = |\bar{A} \times \bar{B}| \] This condition implies a specific relationship between the vectors \( \bar{A} \) and \( \bar{B} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors bara,barb and bara+barb are

If bara.barb=barb.barc=barc.bara=0 then the value of [bara" "barb" "barc] is equal to

If bara,barb,barc are three vectors, then [bara,barb,barc] is not equal to

For any three vectors bara,barb and barc,(bara-barb)[(barb+barc)xx(barc+bara)] is equal to:

IF bara times barb = barc and barb times barc=bara then

For any vectors bara,barb,barc correct statement is

lf bara = 3i - 5j and barb = 6i + 3j are two vectors, and barc is a vector such that barc = bara xx barb , then : abs(bara) : abs(barb) : abs(barc) =

Angle between vectors bara and barb , where bara, barb, barc are unit vectors satisfying bara + barb + sqrt3.barc=bar0 , is

If bara,barb,barc are unit vectors such that bara.barb=0,bara.barc and the angle between barb and barc is pi/3 then the value of |bara times barb-bara times barc| is _______