Home
Class 12
PHYSICS
If overset(rarr)A+overset(rarr)B+overse...

If `overset(rarr)A+overset(rarr)B+overset(rarr)C` =0 and A = B + C, the angle between `overset(rarr)A` and `overset(rarr)B` is :

A

0

B

`(pi)/(4)`

C

`pi`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \(\overset{\rarr}{A} + \overset{\rarr}{B} + \overset{\rarr}{C} = 0\) 2. \(\overset{\rarr}{A} = \overset{\rarr}{B} + \overset{\rarr}{C}\) From the first equation, we can express \(\overset{\rarr}{C}\) in terms of \(\overset{\rarr}{A}\) and \(\overset{\rarr}{B}\): \[ \overset{\rarr}{C} = -(\overset{\rarr}{A} + \overset{\rarr}{B}) \] Now, we can use the second equation to substitute \(\overset{\rarr}{C}\): \[ \overset{\rarr}{C} = \overset{\rarr}{A} - \overset{\rarr}{B} \] Now we have two expressions for \(\overset{\rarr}{C}\): 1. \(\overset{\rarr}{C} = -(\overset{\rarr}{A} + \overset{\rarr}{B})\) 2. \(\overset{\rarr}{C} = \overset{\rarr}{A} - \overset{\rarr}{B}\) Setting these two expressions equal to each other gives us: \[ -(\overset{\rarr}{A} + \overset{\rarr}{B}) = \overset{\rarr}{A} - \overset{\rarr}{B} \] Now, rearranging this equation: \[ -\overset{\rarr}{A} - \overset{\rarr}{B} = \overset{\rarr}{A} - \overset{\rarr}{B} \] Adding \(\overset{\rarr}{A}\) and \(\overset{\rarr}{B}\) to both sides: \[ 0 = 2\overset{\rarr}{A} \] This implies that \(\overset{\rarr}{A} = 0\), which is not possible unless the vectors are in a specific configuration. Next, we will use the magnitudes of the vectors. Taking the magnitudes of both sides of the equation \(\overset{\rarr}{A} + \overset{\rarr}{B} + \overset{\rarr}{C} = 0\): \[ |\overset{\rarr}{C}|^2 = |\overset{\rarr}{A}|^2 + |\overset{\rarr}{B}|^2 + 2 |\overset{\rarr}{A}||\overset{\rarr}{B}|\cos(\theta) \] Where \(\theta\) is the angle between \(\overset{\rarr}{A}\) and \(\overset{\rarr}{B}\). From the second equation, we can also express \(|\overset{\rarr}{C}|\): \[ |\overset{\rarr}{C}| = |\overset{\rarr}{A}| - |\overset{\rarr}{B}| \] Squaring both sides gives: \[ |\overset{\rarr}{C}|^2 = (|\overset{\rarr}{A}| - |\overset{\rarr}{B}|)^2 = |\overset{\rarr}{A}|^2 - 2|\overset{\rarr}{A}||\overset{\rarr}{B}| + |\overset{\rarr}{B}|^2 \] Now we can equate the two expressions for \(|\overset{\rarr}{C}|^2\): \[ |\overset{\rarr}{A}|^2 - 2|\overset{\rarr}{A}||\overset{\rarr}{B}| + |\overset{\rarr}{B}|^2 = |\overset{\rarr}{A}|^2 + |\overset{\rarr}{B}|^2 + 2 |\overset{\rarr}{A}||\overset{\rarr}{B}|\cos(\theta) \] This simplifies to: \[ -2|\overset{\rarr}{A}||\overset{\rarr}{B}| = 2 |\overset{\rarr}{A}||\overset{\rarr}{B}|\cos(\theta) \] Dividing both sides by \(2|\overset{\rarr}{A}||\overset{\rarr}{B}|\) (assuming they are not zero): \[ -1 = \cos(\theta) \] This implies: \[ \theta = \pi \text{ radians} \text{ or } 180^\circ \] Thus, the angle between \(\overset{\rarr}{A}\) and \(\overset{\rarr}{B}\) is \(180^\circ\).

To solve the problem, we start with the given equations: 1. \(\overset{\rarr}{A} + \overset{\rarr}{B} + \overset{\rarr}{C} = 0\) 2. \(\overset{\rarr}{A} = \overset{\rarr}{B} + \overset{\rarr}{C}\) From the first equation, we can express \(\overset{\rarr}{C}\) in terms of \(\overset{\rarr}{A}\) and \(\overset{\rarr}{B}\): \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |overset(rarr)A+overset(rarr)B|=|overset(rarr)A-overset(rarr)B| what is the angle between overset(rarr)A and overset(rarr)B ?

The maqunitudes of vecotr overset(rarrA), overset(rarr)B and overset(rarr)C are respectively 12,5 and 13 units and overset(rarr)A+overset(rarr)B=overset(rarr)C then the angle between overset(rarr)A and overset(rarr)B is :

If |overset(rarr)A-overset(rarr)B|=|overset(rarr)A|-|overset(rarr)B| the angle between overset(rarr)A and overset(rarr)B is

If overset(rarr)A=overset(rarr)B+overset(rarr)C and the magnitude of overset(rarr)A, overset(rarr)B and overset(rarr)C are 5,4 and 3 units respectively the angle between overset(rarr)A and overset(rarr)C is

Projection of overset(rarr)P on overset(rarr)Q is :

Let overset(rarr)C = overset(rarr)A+overset(rarr)B then :

If overset(rarr)B=noverset(rarr)A and overset(rarr)A is antiparallel with overset(rarr)B , then n is :