Home
Class 12
PHYSICS
What is the torque of a force overset(ra...

What is the torque of a force `overset(rarr)F=(2 hat i -3 hat j +4 hat k)` Newton acting at a point `overset(rarr)r=(3 hat I +2 hat j + 3 hat k)` metre about the origin ?

A

`6hati -6 hatj +12hatk`

B

`17hat i-6 hat j-13 hatk`

C

`-6hat I +6hat j-12 hatk`

D

`-17hati+6 hat j+13 hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque of a force \(\overset{\rarr}{F} = (2 \hat{i} - 3 \hat{j} + 4 \hat{k})\) Newton acting at a point \(\overset{\rarr}{r} = (3 \hat{i} + 2 \hat{j} + 3 \hat{k})\) meter about the origin, we can use the formula for torque: \[ \overset{\rarr}{\tau} = \overset{\rarr}{r} \times \overset{\rarr}{F} \] ### Step 1: Write down the vectors We have: - Position vector: \(\overset{\rarr}{r} = 3 \hat{i} + 2 \hat{j} + 3 \hat{k}\) - Force vector: \(\overset{\rarr}{F} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k}\) ### Step 2: Set up the determinant for the cross product The torque can be calculated using the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of the vectors \(\overset{\rarr}{r}\) and \(\overset{\rarr}{F}\): \[ \overset{\rarr}{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 3 \\ 2 & -3 & 4 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we can expand it as follows: \[ \overset{\rarr}{\tau} = \hat{i} \begin{vmatrix} 2 & 3 \\ -3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 3 \\ 2 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 2 \\ 2 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 2 & 3 \\ -3 & 4 \end{vmatrix} = (2)(4) - (3)(-3) = 8 + 9 = 17 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 3 & 3 \\ 2 & 4 \end{vmatrix} = (3)(4) - (3)(2) = 12 - 6 = 6 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 3 & 2 \\ 2 & -3 \end{vmatrix} = (3)(-3) - (2)(2) = -9 - 4 = -13 \] ### Step 4: Combine the results Now substituting back into the torque equation: \[ \overset{\rarr}{\tau} = 17 \hat{i} - 6 \hat{j} - 13 \hat{k} \] ### Final Result Thus, the torque \(\overset{\rarr}{\tau}\) is: \[ \overset{\rarr}{\tau} = 17 \hat{i} - 6 \hat{j} - 13 \hat{k} \text{ Newton meter} \]

To find the torque of a force \(\overset{\rarr}{F} = (2 \hat{i} - 3 \hat{j} + 4 \hat{k})\) Newton acting at a point \(\overset{\rarr}{r} = (3 \hat{i} + 2 \hat{j} + 3 \hat{k})\) meter about the origin, we can use the formula for torque: \[ \overset{\rarr}{\tau} = \overset{\rarr}{r} \times \overset{\rarr}{F} \] ### Step 1: Write down the vectors We have: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The torque of force barF= (2 hat i -3 hat j + 4 hat k) newton acting at the point = (3 hat i + 2 hat j+ 3 hat k) metre about origin is tau (in N-m). Find x. component of tau .

Find the magnitude of torque of torque of a force vec F = )-3 hat i+ hat j +5 hat k) . Newton actiong at the point vec r =(7 hat j+3 hat j +hat k) metre.

Calculate the magnitude of the vector, overset(rarr)r =(3 hat i+4 hat j + 7hat k) metre.

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

A constant force (2 hat i+ 3 hat j+ 4 hat k) mewton pewton produces a desplacement of (2 hati +3 hat j+ 4 hat k) metre. What is the word done?

Find unit vectors along overset(rarr)A=hat I + hat j - 2 hat k and overset(rarr)B=hat I +2 hat j -hat k

Following forces start acting on a particle at rest at the origin of the co-ordinate system overset(rarr)F_(1)=-4 hat I -5 hat j +5hat k , overset(rarr)F_(2)=5hat I +8 hat j +6hat k , overset(rarr)F_(3)=-3hat I + 4 hat j - 7 hat k and overset(rarr)F_(4)=2hat i - 3 hat j - 2 hat k then the particle will move

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(k)+hat(k) about origin will be