Home
Class 12
PHYSICS
If overset(rarr)A=2 hat i + 3 hat j- h...

If `overset(rarr)A=2 hat i + 3 hat j- hat k` and `overset(rarr)B=-hat i+3 hat j +4 hat k` and then projection of `overset(rarr)A` on `overset(rarr)B` will be :

A

`(3)/sqrt(13)`

B

`(3)/sqrt(26)`

C

`sqrt(3)/(26)`

D

`sqrt(3)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector \(\overset{\rarr}{A}\) on vector \(\overset{\rarr}{B}\), we can use the formula for the projection of one vector onto another. The projection of vector \(\overset{\rarr}{A}\) onto vector \(\overset{\rarr}{B}\) is given by: \[ \text{proj}_{\overset{\rarr}{B}} \overset{\rarr}{A} = \frac{\overset{\rarr}{A} \cdot \overset{\rarr}{B}}{|\overset{\rarr}{B}|^2} \overset{\rarr}{B} \] ### Step 1: Calculate the dot product \(\overset{\rarr}{A} \cdot \overset{\rarr}{B}\) Given: \[ \overset{\rarr}{A} = 2 \hat{i} + 3 \hat{j} - \hat{k} \] \[ \overset{\rarr}{B} = -\hat{i} + 3 \hat{j} + 4 \hat{k} \] The dot product is calculated as follows: \[ \overset{\rarr}{A} \cdot \overset{\rarr}{B} = (2)(-1) + (3)(3) + (-1)(4) \] \[ = -2 + 9 - 4 \] \[ = 3 \] ### Step 2: Calculate the magnitude of vector \(\overset{\rarr}{B}\) The magnitude of vector \(\overset{\rarr}{B}\) is given by: \[ |\overset{\rarr}{B}| = \sqrt{(-1)^2 + (3)^2 + (4)^2} \] \[ = \sqrt{1 + 9 + 16} \] \[ = \sqrt{26} \] ### Step 3: Calculate \(|\overset{\rarr}{B}|^2\) Now, we need \(|\overset{\rarr}{B}|^2\): \[ |\overset{\rarr}{B}|^2 = 26 \] ### Step 4: Substitute into the projection formula Now, substitute the values into the projection formula: \[ \text{proj}_{\overset{\rarr}{B}} \overset{\rarr}{A} = \frac{3}{26} \overset{\rarr}{B} \] ### Step 5: Write the final projection vector Substituting \(\overset{\rarr}{B}\): \[ \text{proj}_{\overset{\rarr}{B}} \overset{\rarr}{A} = \frac{3}{26} (-\hat{i} + 3\hat{j} + 4\hat{k}) \] \[ = -\frac{3}{26} \hat{i} + \frac{9}{26} \hat{j} + \frac{12}{26} \hat{k} \] ### Step 6: Magnitude of the projection The magnitude of the projection is: \[ \left|\text{proj}_{\overset{\rarr}{B}} \overset{\rarr}{A}\right| = \frac{3}{\sqrt{26}} \] ### Final Answer Thus, the projection of vector \(\overset{\rarr}{A}\) on vector \(\overset{\rarr}{B}\) is: \[ \frac{3}{\sqrt{26}} \] ---

To find the projection of vector \(\overset{\rarr}{A}\) on vector \(\overset{\rarr}{B}\), we can use the formula for the projection of one vector onto another. The projection of vector \(\overset{\rarr}{A}\) onto vector \(\overset{\rarr}{B}\) is given by: \[ \text{proj}_{\overset{\rarr}{B}} \overset{\rarr}{A} = \frac{\overset{\rarr}{A} \cdot \overset{\rarr}{B}}{|\overset{\rarr}{B}|^2} \overset{\rarr}{B} \] ### Step 1: Calculate the dot product \(\overset{\rarr}{A} \cdot \overset{\rarr}{B}\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find unit vectors along overset(rarr)A=hat I + hat j - 2 hat k and overset(rarr)B=hat I +2 hat j -hat k

(i) State the associative and commutative laws of vector addition. (ii) For two given vectors A=hat I + 2 hat j -3hat k , overset(rarr)B=2 hati -hat j + 3 hatk find the vector sum of overset(rarr)A and overset(rarr)B also find the magnitude of (overset(rarr)A+overset(rarr)B)

If overset(rarr)A=(2 hat i+2 hat j + 2 hat k) and overset(rarr)B=(3 hat i+ 4 hat j) Determine the vector having magnitude as overset(rarr)B and parallel to . overset(rarr)A

If vec A=2hat i+3hat j-hat k and vec B=-hat i+3hat j+4hat k ,then projection of A on B will be (n)/(sqrt(26)) then n is

If vec a=hat i-hat j and vec b=-hat j+hat k find the projection of vec a on vec b

If vec a=2hat i+hat j+hat k,vec b=3hat i-4hat j+2hat k and vec c=hat i-2hat j+2hat k then the projection of vec a+vec b is

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

Following forces start acting on a particle at rest at the origin of the co-ordinate system overset(rarr)F_(1)=-4 hat I -5 hat j +5hat k , overset(rarr)F_(2)=5hat I +8 hat j +6hat k , overset(rarr)F_(3)=-3hat I + 4 hat j - 7 hat k and overset(rarr)F_(4)=2hat i - 3 hat j - 2 hat k then the particle will move