Home
Class 12
MATHS
If P (B) = (3)/(5) , P (A//B) = (1)/(2) ...

If `P (B) = (3)/(5) , P (A//B) = (1)/(2)` and `P (A cup B) = (4)/(5)` , then `P(A cup B)' + P( A' cup B)` is equal to :

A

`1//5`

B

`4//5`

C

`1//2`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(A' \cup B) + P(A \cup B') \). We will use the given probabilities to find the required values step by step. ### Step 1: Understand the given probabilities We have: - \( P(B) = \frac{3}{5} \) - \( P(A|B) = \frac{1}{2} \) - \( P(A \cup B) = \frac{4}{5} \) ### Step 2: Find \( P(A \cap B) \) Using the definition of conditional probability: \[ P(A|B) = \frac{P(A \cap B)}{P(B)} \] Substituting the known values: \[ \frac{1}{2} = \frac{P(A \cap B)}{\frac{3}{5}} \] Cross-multiplying gives: \[ P(A \cap B) = \frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10} \] ### Step 3: Find \( P(A) \) Using the formula for the probability of the union of two events: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substituting the known values: \[ \frac{4}{5} = P(A) + \frac{3}{5} - \frac{3}{10} \] To solve for \( P(A) \), first convert \( \frac{3}{5} \) to tenths: \[ \frac{3}{5} = \frac{6}{10} \] Now substituting: \[ \frac{4}{5} = P(A) + \frac{6}{10} - \frac{3}{10} \] This simplifies to: \[ \frac{4}{5} = P(A) + \frac{3}{10} \] Convert \( \frac{4}{5} \) to tenths: \[ \frac{4}{5} = \frac{8}{10} \] Now we have: \[ \frac{8}{10} = P(A) + \frac{3}{10} \] Subtract \( \frac{3}{10} \) from both sides: \[ P(A) = \frac{8}{10} - \frac{3}{10} = \frac{5}{10} = \frac{1}{2} \] ### Step 4: Find \( P(A' \cup B) \) Using the formula: \[ P(A' \cup B) = 1 - P(A \cap B') \] We know: \[ P(A \cap B') = P(B) - P(A \cap B) \] Substituting the known values: \[ P(A \cap B') = \frac{3}{5} - \frac{3}{10} \] Convert \( \frac{3}{5} \) to tenths: \[ P(A \cap B') = \frac{6}{10} - \frac{3}{10} = \frac{3}{10} \] Now substituting back: \[ P(A' \cup B) = 1 - P(A \cap B') = 1 - \frac{3}{10} = \frac{7}{10} \] ### Step 5: Find \( P(A \cup B') \) Using the formula: \[ P(A \cup B') = P(A) + P(B') - P(A \cap B') \] We know: \[ P(B') = 1 - P(B) = 1 - \frac{3}{5} = \frac{2}{5} \] Now substituting: \[ P(A \cup B') = P(A) + P(B') - P(A \cap B') \] Substituting the known values: \[ P(A \cup B') = \frac{1}{2} + \frac{2}{5} - \frac{3}{10} \] Convert \( \frac{1}{2} \) to tenths: \[ P(A \cup B') = \frac{5}{10} + \frac{4}{10} - \frac{3}{10} = \frac{6}{10} = \frac{3}{5} \] ### Step 6: Combine the results Now we can find: \[ P(A' \cup B) + P(A \cup B') = \frac{7}{10} + \frac{3}{5} \] Convert \( \frac{3}{5} \) to tenths: \[ \frac{3}{5} = \frac{6}{10} \] Thus: \[ P(A' \cup B) + P(A \cup B') = \frac{7}{10} + \frac{6}{10} = \frac{13}{10} = 1.3 \] ### Final Answer \[ P(A' \cup B) + P(A \cup B') = 1.3 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P(B) =3/5,P(A//B)=1/2andP(AcupB)=4/5 , then P(AcupB)'+P(A'cupB) is equal to

If P(A)=(1)/(4), P(overline(B))=(1)/(2) " and " P(A cup B)=(5)/(9) , then P(A//B) is

If P(A)=(2)/(3), P(B)=(1)/(2) " and " P(A cup B)=(5)/(6) , then events A and B are

If P(A) =(1)/(4),P(B) = (1)/(2),P(A uu B) = (5)/(8) , then P(A nn B) is equal to .