Home
Class 12
MATHS
If A =[{:(0,1,0),(0,0,1),(p,q,r):}], sho...

If A `=[{:(0,1,0),(0,0,1),(p,q,r):}]`, show that ltbargt `A^(3)= pI+qA+rA^(2)`

A

pI

B

qI

C

rI

D

none of these , I is third order unit

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

GIven the matrix A=[[0,1,00,0,11,2,-1]]. The constants p,q,r sich that A^(3)=pA^(2)+qA+rl, then

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If A=((p,q),(0,1)) , then show that A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(0,1))

If A=[(1,0),(0,3)] and B=[(2,0),(0,1)] then show AB =BA =[(2,0),(0,3)]

If A=[010001pqr] and I is the identity matrix of order 3, show that A^(3)=pI+qA+rA^(2)

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to